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Resonance 
 
There are many systems that naturally vibrate or oscillate.  Examples are a mass on the end of a 
spring, a pendulum, a child on a swing, a bouncing ball and an RLC circuit.  For a system to have 
natural oscillations there are two requirements: (1) there must be a restoring force that pulls the 
system back toward equilibrium whenever it is displaced from equilibrium, and (2) the system 
must have inertia which causes it to overshoot equilibrium.  In any oscillating system, to observe 
the natural oscillations all that is required is to displace the system from equilibrium and let it go.  
In each case there is a certain natural angular velocity, which we denote n , for the oscillations.   

 
Now suppose that an oscillating force is applied to the naturally oscillating system.  If the angular 
velocity of the applied force, call it  , is very different from the natural angular velocity n , then 

the natural oscillations of the system will simply die out.  But if the angular velocity  of the 
applied force equals the natural angular velocity n of the system then the oscillations will grow to 

a very large amplitude, limited only by the resistance or friction in the system.  We say that the 
applied force and the system are then in resonance.  When this happens there is a maximum 
transfer of energy from the source of the applied force to the system.  n is often also called res , 

the angular velocity at which resonance occurs. 
 
Fig. 8.18 shows an RLC circuit with the capacitor initially 
charged.  When the switch is closed the capacitor discharges 
and a clockwise current flows as shown.  But the capacitor 
doesn’t simply discharge until its charge is zero.  The inductor 
gives the current an ‘inertia’ causing the system to overshoot 
this equilibrium and the capacitor becomes charged in the 
opposite direction.  Repeated discharging and overshooting 
results in the natural oscillations in the current.   
 
The charged capacitor is analogous to a stretched spring and 
the inductor is analogous to the mass at the end of the spring.  
Our question is “what is n for the RLC circuit and how can 

we find it?” 
 

In Fig. 8.19 the same R, L, and C have been connected to an 
AC voltage source whose angular velocity  can be varied at 
will.  This voltage source acts as the oscillating applied force 
for this system.   
 
If the angular velocity of the voltage source equals the 
natural angular velocity n of the LRC circuit then the 

alternating current i will build up to the largest amplitude 
possible and there will be the maximum possible power 
transferred to the circuit.  We will have resonance.   
 
This is the peak in the graph in Fig. 8.20 where we have 
plotted the amplitude of i versus the angular velocity   of the 
voltage generator.   
 
In our third book, Differential Equations for Electrical 
Technology, we will discover a more direct way of deriving n 

but here we will derive it indirectly by finding what value of  
causes | i | to be a maximum.   

Figure 8.18  The current in a 
series RLC circuit can have 
natural oscillations. 

Figure 8.19  An alternating 
voltage source vgen can excite the 
oscillations and drive them to a 
great amplitude. 

Figure 8.20  The amplitude of the 
current oscillations as a function of 
the angular velocity  of vgen.  
Adjusting  to equal n will cause 
large current oscillations.  This 
condition is called resonance. 
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The amplitude of the current, | i |, is a maximum when 
the magnitude of the impedance, | Zeq |, is a minimum, 
since | i |  = | v | / | Zeq |.  The impedance when all three 

components, R, L and C are present is  
 
 Zeq = ZR + ZL + ZC 
 

 = R + j ( XL  XC ) 
 

 = 1R j L
C


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Fig. 8.21 shows Zeq at a variety of values of .  We 

see that | Zeq | is a minimum when   is such that  
 

  XL = XC 
1 1L
C LC

 


     

 
This value of   causes a maximum current and hence must be the natural or resonance angular 
velocity. 

 1
n

LC
   (8.15) 

 

 
To learn about resonance check the app at phet.colorado.edu/en/simulation/resonance. 
 

 
 
Problem Set 8.1 – Series Circuits 
 
For problems 1 to 4, v and i are as shown in Fig. 8.22.  For each 
problem draw the phasor diagram (make the current reference), 
draw the impedance diagram, identify the circuit as either series 
RL or series RC and calculate the values of R and L or C. 
 
1.  v = 20 sin ( 1000 t + 45o

 ),  i = 3.5 sin ( 1000 t + 10o
 ) 

 
2.  v = 30 sin ( 2000 t + 63o

 ),  i = 5 sin ( 2000 t ) 
 
3.  v = 100 sin ( 500 t + 63o

 ),  i = 10 cos ( 500 t + 20o
 ) 

 
4.  v = 200 cos ( 2000 t ),  i = 150 cos ( 2000 t + 60o

 ) 
 
 
5.  A series RC circuit has R = 10  and C = 50 F .  At what angular velocity will the current lead 
the voltage by 45o? 
 
6.  A series RL circuit has R = 10 .  What value of L will cause the voltage to lead the current by 
60o at a frequency of 1000 Hz? 
 
7.  A series RL circuit has L = 0.15 H.  At a frequency of 500 Hz the voltage leads the current by 
60o.  What is R ? 

Figure 8.21  Zeq for various 
values of .  The shortest is 
when XL = XC. 

Figure 8.22  

R

v

i

L C or ?

Axis
Imaginary

R
Real Axis

X X

X X

X X

Z

Z

Z

L C

L C

L C

eq n

eq n

eq n




when

when 

when

erich
Text Box




