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 The second idea behind the FFT concerns how to get the correct hk’s into the final DFT’s of 
size 2.  If the subscripts 0 to 7 of the hk’s are written in binary form, as shown in first row of 
the following table, and the bits are reversed, as shown in the second row, then we get the 
correct ordering of the subscripts of the hk’s.  

 
   000=0 001=1 010=2 011=3 100=4 101=5 110=6 111=7 

000=0 100=4 010=2 110=6 001=1 101=5 011=3 111=7 

 
 
On the next page is a subroutine, FFT, written in Visual Basic and based on one given in 
Numerical Recipes by Press, Flannery, Teukolsky and Vetterling that implements the FFT.   
The input quantities to FFT are: 

 ISign, normally set to 1, is the sign in the exponential of Eq. (10.88).  If ISign is set to 1, the 
routine calculates the inverse transform (10.90) – except that it does not multiply by the factor 
l/N.  You have to do that yourself.   

 The number of data points, N.   

 The array, Data, of length 2N.  Upon entry it contains the hk’s.  The reason its length is 2N 
rather than N is that the hk’s can be complex numbers.  The real part of each number is stored 
first, then the complex part as shown in Fig. 10.45 (a).  If the hk’s are real then the imaginary 
elements are simply set to zero. 

 
The only output quantity from FFT is the array Data, which now contains the Hn’s.  These are 
also usually complex so again the real part of each Hn is stored first, then the complex part.  Note 
carefully which frequency is stored at which location.  The order is shown in Fig. 10.45(b).  It is 
exactly the same order as in Fig. 10.43, namely DC first, then positive frequencies from lowest to 
highest, then negative frequencies from most negative to least negative.    
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 Figure 10.45  (a)  Upon entry to routine FFT, the array Data holds the hk’s.  The hk’s 

are generally complex numbers.  The real part is stored first then the imaginary part.   
(b)  Upon exit from routine FFT, array Data holds the Hn’s.  They are also complex.  
Their order is: DC, then positive frequencies, then negative; the same as in Fig. 10.43. 
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Sub FFT(Data() As Double, N As Integer, ISign As Integer) 

    Const Pi = 3.14159265358979 
    Dim I As Integer, IStep As Integer, J As Integer, M As Integer, MMax As Integer 
    Dim NN As Integer, TempI As Double, TempR As Double,  WTemp As Double 
    Dim Theta As Double, WI As Double, WPI As Double, WR As Double, WPR As Double 
     
    NN = 2 * N 
    J = 1 
 
    For I = 1 To NN Step 2                'This is the bit-reversal section of the routine. 
        If J > I Then 
            TempR = Data(J)              'Exchange the two complex numbers. 
            TempI = Data(J + 1) 
            Data(J) = Data(I) 
            Data(J + 1) = Data(I + 1) 
            Data(I) = TempR 
            Data(I + 1) = TempI 
        End If 
         
        M = N 
1:     If M >= 2 And J > M Then 
            J = J - M 
            M = M / 2 
            GoTo 1 
        End If 
         
        J = J + M 
    Next I 
    
    MMax = 2   'This is the FFT splitting-in-two section of the routine. 
2:   If NN > MMax Then                   'This outer loop is executed log2(N) times. 
        IStep = 2 * MMax 
        Theta = 2 * Pi / (ISign * MMax)  'Initialize for the trigonometric recurrence. 
        WPR = -2 * Sin(0.5 * Theta) ^ 2 
        WPI = Sin(Theta) 
        WR = 1   'WR and WI are real and imaginary parts of W 
        WI = 0   'raised to a power. 
        
        For M = 1 To MMax Step 2  'Here are the two nested inner loops. 
            For I = M To NN Step IStep 
                J = I + MMax 
                TempR = WR * Data(J) - WI * Data(J + 1) 
                TempI = WR * Data(J + 1) + WI * Data(J) 
                Data(J) = Data(I) - TempR 
                Data(J + 1) = Data(I + 1) - TempI 
                Data(I) = Data(I) + TempR 
                Data(I + 1) = Data(I + 1) + TempI 
            Next I 
                 
            WTemp = WR                   'Trigonometric recurrence for W raised to a new power. 
            WR = WR * WPR - WI * WPI + WR 
            WI = WI * WPR + WTemp * WPI + WI 
        Next M  
         
        MMax = IStep 
        GoTo 2 
    End If  
End Sub 
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Example 10.15:  (a)  Write an Excel macro that uses the FFT subroutine listed on the previous 

page to approximate the Fourier transform of the function    23 cos 6th t e t .  Note that in 

Example 10.14 we found its exact Fourier transform.  This example will illustrate the similarities 
and differences between the discrete Fourier transform (calculated here) and the continuous 
Fourier transform (calculated there).   
 
(b)  Suppose that h(t) is the current flowing in a 1 resistor.  Use the FFT to approximate the total 
energy dissipated in the resistor and the energy at each frequency (i.e. the power spectrum). 
 
Solution:  Here is a subroutine, Wrapper, written in Visual Basic, that sets up the hk’s, then calls 
FFT, and then prints the Hn’s to an Excel spreadsheet.  There is also a function, Waveform, which 
is the function to be Fourier transformed.   
 

 
Public Sub Wrapper() 
    Const ISign = 1 
    Const N = 32                               '[1] The number of sample points. 
    Const DeltaT = 2.666667 / N 
    Const Midpt = N / 2                         'To achieve even or odd symmetry it is 
    Dim Data() As Double                        'useful to put t=0 at Midpt index point. 
    ReDim Data(1 To 2 * N) 
    Dim K As Integer, Time As Double, Energy As Double, EngyT As Double, EngyF As Double 
     
    For K = 0 To N - 1 
        Time = -(K - Midpt) * DeltaT   '[2] Note t=0 when k=Midpt 
        Data(2 * K + 1) = Waveform(Time)      '[3] Set up Re{hk}, the waveform. 
        Data(2 * K + 2) = 0                    'Set up Im{hk}, all zeros. 
        Cells(K + 1, 1) = K                    'Print the index k in col 1 of worksheet. 
        Cells(K + 1, 2) = Data(2 * K + 1)    'Print hk in col 2. 
        EngyT = EngyT + Data(2 * K + 1) ^ 2  * DeltaT      'Sum up Energy over all times. 
    Next K 
     
    Call FFT(Data, N, ISign)                   'DO THE FFT. 
     
    For K = 0 To N - 1 
        Cells(K + 1, 3) = Data(2 * K + 1)     'Print Re{Hn} in col 3. 
        Cells(K + 1, 4) = Data(2 * K + 2)     'Print Im{Hn} in col 4. 
    Next K 
     
    EngyF = (Data(1) ^ 2 + Data(2) ^ 2) * DeltaT / N        'Calculate the energy in the DC term. 
    Cells(1, 5) = EngyF                       'Print DC energy in col 5. 
     
    Energy = (Data(N + 1) ^ 2 + Data(N + 2) ^ 2) * DeltaT / N    'Calculate energy at Nyquist freq. 
    Cells(N / 2 + 1, 5) = Energy                             'Print energy at Nyquist freq. 
    EngyF = EngyF + Energy 
 
    For K = 1 To N / 2 - 1                                              'Calculate energy at all other frequencies. 
        Energy = (Data(2 * K + 1) ^ 2 + Data(2 * K + 2) ^ 2 _ 
              + Data(2 * (N - K) + 1) ^ 2 + Data(2 * (N - K) + 2) ^ 2) *DeltaT / N 
        Cells(K + 1, 5) = Energy              'Print energy at all other frequencies. 
        EngyF = EngyF + Energy                          'Sum up energy over all frequencies. 
    Next K 
End Sub 
 
Function Waveform(T)    'The waveform to be transformed. 
    Const Pi = 3.14159265358979 
    Waveform = Exp(-3 * T ^ 2) * Cos(6 * Pi * T) 
End Function 
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Copy FFT, Wrapper and Waveform into an Excel module  (see the instructions on page 118 on 
how to do this).  Because Wrapper is declared “public” it appears in the list of macros that can be 
run in Excel.  Run it.  It prints 5 columns of numbers into a spreadsheet: 

 Column 1 lists the index number k (or n).  The number of data points is presently set to 
N = 32 (in the line labelled [1] in Wrapper), so this column contains the numbers 0 to 31. 

 Column 2 lists the real parts of the hk’s.  (The imaginary parts are zero and so not listed.)  
These values are calculated in line [3].  Line [2] is the connection between time t and the 
index k (compare with Eq. (10.85)).  It causes time t = 0 to occur at index point k = 16 
and the time interval between samples to be  = 1

12 .  Note that if the hk’s have even 

symmetry about the mid-index k = 16 (which is the case presently) then the Hn’s will be 
real (i.e. the imaginary part of the Fourier transform will be zero).  A scatter plot of 
column 2 vs. column 1 is shown in Fig. 10.46.  (Note that the points are the hk’s and the 
curve is just a visual aid to help see the oscillations.)  Compare it with Fig. 10.36. 
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 Column 3 lists the real parts of the Hn’s (the output from FFT).  A scatter plot of column 
3 vs. column 1 is shown in Fig. 10.47.  It is interesting to compare it to Fig. 10.38 which 
is the exact Fourier transform.   
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 Column 4 lists the imaginary parts of the Hn’s.  They are presently all zero.  However if 
line [2] in Wrapper is changed to “Data(2 * K + 1) = Waveform(Time ‐ 1/12)” then the 
waveform is shifted one index point to the right, the even symmetry is lost, and the 
imaginary parts of the Hn’s become non-zero.  This is very similar to what we saw on 
page 257, namely shifting a triangle waveform horizontally changed its Fourier series 
from cosines into sines.  Here the real parts change into imaginary parts. 

 Column 5 lists the energy spectrum, which is similar to the power spectrum for periodic 
waveforms.  It is explained in more detail below.  A plot of column 5 vs. column 1 is 
shown in Fig. 10.48. 

 
 
 
 

Figure 10.46  The points 
are a plot of hk, k=0, …, 31.  
The curve is a visual aid to 
help see the oscillations. 

Figure 10.47  The real part 
of Hn, n=0, …, 31.  Again 
the curve is just a visual 
aid. 

Figure 10.48  The energy 
spectrum for n=0, …, 16.   
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Some background on the energy spectrum.  Suppose that    23 cos 6th t e t  is a current in 

amperes flowing through a 1 resistor.  The instantaneous power is    2
( )p t h t R  and 

integrating this over all time gives the total energy, E, in joules dissipated in the resistor. 
 

      2 22 3 cos 6 0.3618tE h t dt e t dt
  

 
    . (10.95) 

 
(This answer was gotten using Simpson’s rule)  Notice that it doesn’t make sense to talk about the 
average power as we did in Chapter 6, Section 7, because here the period is infinite (the function 
never repeats) and the average power is zero.  The discrete analog of (10.95) is  
 

     
1 1

2 22

0 0

N N

k k
k k

E h t dt h h
 


 

        (10.96) 

 
We can check the accuracy of this approximation by using the SUMSQ function in Excel to sum 
the squares of the numbers in column 2, giving 4.3416, and then multiplying by  = 1

12 .  To 4 sig. 

figs. this gives the same value as the Simpson integration did, namely 0.3618. 
 
Using Parseval’s theorem, (10.91), the total energy can also be expressed as a summation over 
frequencies. 
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There are two important points when applying (10.97) to get the energy spectrum (the distribution 
of energy among the frequencies): 
 
 Unlike the hk’s, the Hn’s are generally complex numbers and for any complex number, a bj , 

absolute value means 
2 2 2a bj a b   .  Thus, for example, to get E0, the energy in the DC 

component, we have to use these elements of the array Data (see Fig. 10.45(b)): 
 

    2 2 2

0 0 1 2E H Data Data
N N

 
    

 
and to get /2NE , the energy at the Nyquist frequency, we have to use these elements: 

 

    2 2 2

/2 /2 1 2N NE H Data N Data N
N N

 
      

 
 All frequencies other than the DC and the Nyquist frequency have both positive and negative 

frequency components that should be counted together.  For example the energy in the lowest 

frequency, 1
Nf  , is  

 

          2 2 2 2 2 2

1 1 1 3 4 2 1 2NE H H Data Data Data N Data N
N N
 

        

 
The other values in column 5 are gotten the same way.  Notice that the energy spectrum is peaked 
at n = 8.  The corresponding frequency, according to Eq. (10.86), is 1

12

8
32 3n

Nf    . 

 




