The next row is shown in the animation to the right. The pattern for each row of the triangle is:
 the left and right ends always equal 1
 each internal element is the sum of the two elements above left and above right, like this:
If we superimpose Pascal's triangle on top of the pinball machine then we see the connection
between the two: Each number of Pascal's triangle represents the number of distinct paths that
a pinball can take to arrive at that point in the pinball machine:
The numbers in Pascal's triangle can also be gotten using the combination function, like this:
The combination function is defined like this:
_{m}C_{n} equals the number of distinct groups of n objects that can
be chosen from m objects. (The ! means factorial. Note that 0! = 1.
Click here for more on the factorial function.)
Thus Pascal's triangle is essentially a listing of all the possible values of the
combination function.
Some examples of calculations of the combination function are:
and:
The combination function can be used for example to answer the question:
From 4 people, how many distinct groups of 2 people be chosen to work on some project?
The answer is _{4}C_{2}=6. If the persons are called A, B, C and D then
the distinct groups are AB, AC, AD, BC, BD and CD.
In connection with the pinball game the combination function can be used to answer the question:
To arrive at a certain point, the pinball had to fall through 4 rows of pins and go
right twice. How many paths lead to this point? The answer again is _{4}C_{2}=6.
The possible rows at which to go right are 1&2, 1&3, 1&4, 2&3, 2&4, 3&4.
In connection with algebra the combination function can be used to expand an expression like
(a+b)^{4}. Here it is:
The combination function appears here because:
For example the term a^{3}b comes from a b from inside 1 of the
brackets and a's from inside the remaining 3 brackets. There are
_{4}C_{1}=4 ways of choosing which bracket the b should come from.
The blue arrows show one of these ways:
Click here to return to the Math Entertainment page.
